Support Vector Machine Algorithm for Imbalanced Data Learning
نویسندگان
چکیده
منابع مشابه
Combine Vector Quantization and Support Vector Machine for Imbalanced Datasets
In cases of extremely imbalanced dataset with high dimensions, standard machine learning techniques tend to be overwhelmed by the large classes. This paper rebalances skewed datasets by compressing the majority class. This approach combines Vector Quantization and Support Vector Machine and constructs a new approach, VQ-SVM, to rebalance datasets without significant information loss. Some issue...
متن کاملLearning from imbalanced data sets with a Min-Max modular support vector machine
Imbalanced data sets have significantly unequal distributions between classes. This between-class imbalance causes conventional classification methods to favor majority classes, resulting in very low or even no detection of minority classes. A Min-Max modular support vector machine (M-SVM) approaches this problem by decomposing the training input sets of the majority classes into subsets of sim...
متن کاملOnline Imbalanced Support Vector Machine for Phishing Emails Filtering
Phishing emails are a real threat to internet communication and web economy. In real-world emails datasets, data are predominately composed of ham samples with only a small percentage of phishing ones. Standard Support Vector Machine (SVM) could produce suboptimal results in filtering phishing emails, and it often requires much time to perform the classification for large data sets. In this pap...
متن کاملA Simple, Fast Support Vector Machine Algorithm for Data Mining
Support Vector Machines (SVM) and kernel related methods have shown to build accurate models but the learning task usually needs a quadratic programming, so that the learning task for large datasets requires big memory capacity and a long time. A new incremental, parallel and distributed SVM algorithm using linear or non linear kernels proposed in this paper aims at classifying very large datas...
متن کاملAn Intelligence-Based Model for Supplier Selection Integrating Data Envelopment Analysis and Support Vector Machine
The importance of supplier selection is nowadays highlighted more than ever as companies have realized that efficient supplier selection can significantly improve the performance of their supply chain. In this paper, an integrated model that applies Data Envelopment Analysis (DEA) and Support Vector Machine (SVM) is developed to select efficient suppliers based on their predicted efficiency sco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korea Society of Computer and Information
سال: 2010
ISSN: 1598-849X
DOI: 10.9708/jksci.2010.15.7.011